Engineered LINE-1 retrotransposition in nondividing human neurons.

نویسندگان

  • Angela Macia
  • Thomas J Widmann
  • Sara R Heras
  • Veronica Ayllon
  • Laura Sanchez
  • Meriem Benkaddour-Boumzaouad
  • Martin Muñoz-Lopez
  • Alejandro Rubio
  • Suyapa Amador-Cubero
  • Eva Blanco-Jimenez
  • Javier Garcia-Castro
  • Pablo Menendez
  • Philip Ng
  • Alysson R Muotri
  • John L Goodier
  • Jose L Garcia-Perez
چکیده

Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80-100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Heavy Metals on Silencing of Engineered Long Interspersed Element-1 Retrotransposon in Nondividing Neuroblastoma Cell Line

Background: L1 retrotransposons are the most active mobile DNA elements in human genome. Unregulated L1 retrotransposition may have deleterious effect by disrupting vital genes and inducing genomic instabilities. Therefore, human cells control L1 elements by silencing their activities through epigenetic mechanisms. It has been shown that cell division and heavy metals stimulate the frequency of...

متن کامل

Retrotransposition of marked SVA elements by human L1s in cultured cells.

Human retrotransposons generate structural variation and genomic diversity through ongoing retrotransposition and non-allelic homologous recombination. Cell culture retrotransposition assays have provided great insight into the genomic impact of retrotransposons, in particular, LINE-1(L1) and Alu elements; however, no such assay exists for the youngest active human retrotransposon, SINE-VNTR-Al...

متن کامل

The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition

Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded prot...

متن کامل

Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells.

Long interspersed element-1 (L1) retrotransposons compose ∼20% of the mammalian genome, and ongoing L1 retrotransposition events can impact genetic diversity by various mechanisms. Previous studies have demonstrated that endogenous L1 retrotransposition can occur in the germ line and during early embryonic development. In addition, recent data indicate that engineered human L1s can undergo soma...

متن کامل

Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition.

Long interspersed elements (LINE-1s or L1s) are abundant non-LTR retrotransposons that mobilize through an RNA intermediate by target site primed reverse transcription. The L1-encoded proteins (ORF1p and ORF2p) preferentially associate with their encoding transcript to form a ribonucleoprotein particle (RNP), which is a proposed retrotransposition intermediate. Here, we have used epitope taggin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome research

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2017